- Ferguson, G., Glidewell, C., Lewis, A. & Zakaria, C. M. (1995). J. Organomet. Chem. 492, 229–234.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.

Gelin, F. & Thummel, R. P. (1992). J. Org. Chem. 57, 3780-3783.

- Glidewell, C., Ferguson, G., Lough, A. J. & Zakaria, C. M. (1994). J. Chem. Soc. Dalton Trans. pp. 1271-1282.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1995). *PLATON. Molecular Geometry Program.* July 1995 version. University of Utrecht, The Netherlands.
- Vermeulen, A. J. W. A. & Huiszoon, C. (1979). Acta Cryst. B35, 3087–3089.

Acta Cryst. (1996). C52, 773-775

1-Ferrocenyl-2-phenylethanedione

Christopher Glidewell,^a Michael J. Gottfried,^a James Trotter^b and George Ferguson^b

^aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, and ^bDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1. E-mail: cg@st-andrews.ac.uk

(Received 18 August 1995; accepted 1 November 1995)

Abstract

The title compound, $[Fe(C_5H_5)(C_{13}H_9O_2)]$, crystallizes as chiral molecules in space group $P2_12_12_1$; in the crystal chosen for structure analysis, the molecules have the *S* configuration. The molecules are linked by weak C—H···O hydrogen bonds into chains parallel to the *b* axis and by C—H··· π (C==C) interactions into chains parallel to the *a* axis.

Comment

Ferrocenyl-1,2-diketones Fc–CO–CO–R [Fc = (C_5H_5) -Fe (C_5H_4)] are important synthetic intermediates. As part of a wider study of these materials, we now report the structure of a representative example, 1-ferrocenyl-2-phenylethanedione, Fc–CO–CO–Ph (ferrocenylphenyl-glyoxal), (I).

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

1-Ferrocenyl-2-phenylethanedione crystallizes in the non-centrosymmetric space group $P2_12_12_1$ with a single molecule in the asymmetric unit (Fig. 1). Within these molecules the fragment C11—C1—O1 is almost coplanar with the substituted cyclopentadienyl ring C1n (n = 1-5) (Table 2), as typically found in simple acyl ferrocenes Fc-CO-R (Gyepes & Hanic, 1975; Sato, Iwai, Sano & Konno, 1984; Barnes, Bell, Glidewell & Howie, 1990); similarly, the fragment C31—C2—O2 is almost coplanar with the phenyl ring (Table 2). The mean value of the C1n—Cg1—Cg2—C2n twist angle (n = 1-5) is -20.0 (4)°, essentially midway between the value for complete eclipsing of the rings, 0.0°, and the value for perfect staggering, 36.0° (Cg1 and Cg2 are the ring centroids).

Fig. 1. A view of the S enantiomer of (I) with our numbering scheme. Ellipsoids are drawn at the 30% probability level.

The torsion angle O1—C1—C2—O2 is $109.1(5)^{\circ}$, so that the projections of the two carbonyl groups onto the plane normal to C1-C2 are almost orthogonal. Benzil, Ph-CO-CO-Ph, exhibits a similar value, 111.6°, for this torsion angle in the solid state (Brown & Sadanaga, 1965; More, Odou & Lefebvre, 1987), and similar torsion angles have been found for a range of 4,4'-disubstituted benzils (XC₆H₄CO)₂ (Kimura, Mc-Cluney & Watson, 1979; Crowley, Balanson & Mayerle, 1983). However, butane-2,3-dione, CH₃--CO--CO-CH₃ (Eriks, Hayden, Yang & Chan, 1983) and its 1,4bis-diazo derivative (Hope & Black, 1972) are both centrosymmetric molecules in the solid state $(P2_1/n,$ Z = 2) and hence adopt the trans-planar C_{2h} conformation; similarly, this conformer was the sole rotamer found in the gas phase even at 798 K (Danielson & Hedberg, 1979). The conformation found for (I) corresponds to molecular point group C_1 , so that the molecules are chiral in the solid state, and all have the same handedness in $P2_12_12_1$; in the crystal chosen for study, the molecules have the S configuration. In solution, however, the NMR spectra indicate that R/S interconversion is fast at room temperature, so that crystallization in $P2_12_12_1$ represents a case of spontaneous resolution, or 'conglomerate crystallization'

(Bernal, 1985; Bernal, Cetrullo, Cai & Massoud, 1995). The intramolecular bond lengths and angles are unexceptional; the central C-C distance, 1.529 (5) Å, is very similar to the lengths found in butane-2,3-dione [gas-phase 1.524 (3) Å (Danielson & Hedberg, 1979), solid state 1.540(6) Å (Eriks et al., 1983)] and in benzil [trigonal high-temperature phase 1.523 (6) Å, monoclinic low-temperature phase 1.526(13)-1.549(16) Å, mean 1.536 Å (More et al., 1987)].

Within the crystal structure there are a number of short intermolecular contacts. The atom O2 in the molecule at (x, y, z) makes contacts with H35 and C35 in the molecule at $(-x, -\frac{1}{2} + y, \frac{1}{2} - z)$, with O···H and O···C distances of 2.73 and 3.327 (6) Å, respectively; these distances are both within the accepted criteria for attractive C— $H \cdots O$ hydrogen bonds (Desiraju, 1991; Steiner, 1994; Braga, Grepioni, Biradha, Pedireddi & Desiraju, 1995). Such C— $H \cdots O$ hydrogen bonds have been described (Braga et al., 1995) as 'soft' hydrogen bonds, as opposed to N— $H \cdots O$ and O— $H \cdots O$, both of which are 'hard'. Repetition of this interaction throughout the structure of (I) generates chains around the 2_1 axes parallel to the *b* axis. In addition, atom H12 in the molecule at (x, y, z) makes contacts of 2.88 and 2.79 Å with atoms C14 and C15 of the molecule at $(\frac{1}{2} + x, \frac{3}{2} - y, -z)$. These distances are both less than the sum of the van der Waals radii (Bondi, 1964), and may represent a weak C—H··· π (C==C) interaction; a number of examples of attractive C—H $\cdots \pi$ interactions with similar dimensions have been reported (Steiner, 1995). Repetition of the motif throughout the structure of (I) leads to the formation of chains around the 2_1 axes parallel to the *a* axis.

Experimental

Compound (I) was prepared by oxidation of phenacylferrocene, FcCH₂COPh, with manganese dioxide, and purified by chromatography on silica. Crystals suitable for single-crystal X-ray diffraction study were grown by slow evaporation of a solution in ethanol. Analysis: found C 68.3, H 4.8%; C₁₈H₁₄FeO₂ requires C 68.0, H 4.4%. NMR: $\delta_{\rm H}$ 4.25 (s, 5H, C₅H₅), 4.65 (m, 2H) and 4.85 (m, 2H) (C₅H₄), 7.5-8.1 (m, 5H, C₆H₅); $\delta_{\rm C}$ 71.1 (d), 74.6 (d) and 75.2 (s) (C₅H₄), 71.2 (d, C₅H₅); 129.5 (d), 130.6 (d), 133.6 (s) and 135.1 (d) (C_6H_5) , 193.5 (s) and 199.6 (s) $(2 \times CO)$. C36

Crystal data

$[Fe(C_5H_5)(C_{13}H_9O_2)]$	Mo $K\alpha$ radiation
$M_r = 318.14$	$\lambda = 0.7107 \text{ Å}$
Orthorhombic	Cell parameters from 25
<i>P</i> 2 ₁ 2 ₁ 2 ₁	reflections
a = 7.6430(10) Å	$\theta = 10.45 - 18.85^{\circ}$
b = 9.8349(12)Å	$\mu = 1.077 \text{ mm}^{-1}$
c = 18.629(2) Å	T = 294 (1) K
$V = 1400.3 (3) \text{ Å}^3$	Plate
<i>Z</i> = 4	$0.44 \times 0.42 \times 0.14$ mm
$D_x = 1.509 \text{ Mg m}^{-3}$	Orange

Data collection	
Enraf-Nonius CAD-4	1762 independent reflections
diffractometer	1306 observed reflections
$\theta/2\theta$ scans	$[I > 2\sigma(I)]$
Absorption correction:	$\theta_{\rm max} = 26.87^{\circ}$
four ψ scans at 4°	$h = 0 \rightarrow 9$
steps (North, Phillips &	$k = 0 \rightarrow 12$
Mathews, 1968)	$l = 0 \rightarrow 23$
$T_{\min} = 0.806, T_{\max} =$	3 standard reflections
0.999	frequency: 120 min
1762 measured reflections	intensity decay: none

,,

Refinement

Fel

01

02 CI C2 CII

C12 C13

C14 C15

C21

C22

C23

C24 C25

C31

C32

C33

C34 C35

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.0319$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.0712$	1993)
S = 0.977	Extinction coefficient:
1762 reflections	0.0078 (10)
191 parameters	Atomic scattering factors
H atoms riding [SHELXL93	from International Tables
(Sheldrick, 1993) defaults,	for Crystallography (1992,
CH = 0.93 Å]	Vol. C, Tables 4.2.6.8 and
$w = 1/[\sigma^2(F_o^2) + (0.0354P)^2]$	6.1.1.4)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute configuration:
$(\Delta/\sigma)_{\rm max} < 0.001$	Flack (1983) parameter
$\Delta \rho_{\rm max} = 0.352 \ {\rm e} \ {\rm \AA}^{-3}$	= -0.05(3)
$\Delta \rho_{\rm min} = -0.227 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\text{eq}} = (1/3) \sum_{i} \sum_{i} U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$

X	у	c	U_{eq}
0.04799 (6)	0.99393 (5)	0.04381 (2)	0.0373 (2)
-0.2284(4)	0.8187 (4)	0.1935(2)	0.0748 (10)
-0.0046 (4)	0.5688 (3)	0.13469 (15)	0.0704 (10)
-0.1215(6)	0.7886 (4)	0.1482(2)	0.0476 (10)
0.0117 (5)	0.6773 (4)	0.1656(2)	0.0468 (10)
-0.1174 (5)	0.8434 (4)	0.0751 (2)	0.0400 (9)
-0.0111 (5)	0.7983 (4)	0.0171 (2)	0.0437 (10)
-0.0430(6)	0.8838(3)	-0.0418(2)	0.0491 (9)
-0.1679 (5)	0.9819 (4)	-0.0214(2)	0.0520(10)
-0.2140(5)	0.9598 (4)	0.0509(2)	0.0491 (10)
0.1697 (5)	1.0828 (4)	0.1294 (2)	0.0508 (10)
0.2892 (5)	1.0024 (5)	0.0908(2)	0.0563 (10)
0.2966 (6)	1.0533 (5)	0.0203 (3)	0.0629 (13)
0.1828(6)	1.1654 (4)	0.0159(2)	0.0589 (12)
0.1039(5)	1.1833 (4)	0.0840(2)	0.0511 (11)
0.1512 (6)	0.7023(4)	0.2187(2)	0.0455 (10)
0.2844 (7)	0.6069(5)	0.2253 (2)	0.0609 (12)
0.4212(7)	0.6315(5)	0.2713 (2)	0.0683 (14)
0.4254 (7)	0.7476 (5)	0.3121 (2)	0.0669 (13)
0.2929 (7)	0.8405 (5)	0.3072(2)	0.0638 (13)
0.1538(6)	0.8194 (4)	0.2604 (2)	0.0515 (10)

Table 2. Selected geometric parameters (Å, °)

The pseudo-atoms Cg1 and Cg2 are the centroids of the two fivemembered rings.

Fe1-Cg1	1.648 (4)	CICII	1.466 (5)
Fe1-Cg2	1.657 (4)	C1C2	1.529 (5)
01C1	1.211 (5)	C2C31	1.474 (5)
O2C2	1.219 (4)		
Cg1—Fe1—Cg2	177.5 (2)	02C2C1	117.3 (4)
01-C1-C2	118.5 (4)	O2-C2-C31	122.5 (4)
01-C1-C11	124.9 (4)	C1C2C31	120.2 (3)
C2-C1-C11	116.5 (4)		

01	109.1 (5)	01-C1-C11-C15	13.8(6)
C11-C1-C2-O2	-66.3(5)	O2-C2-C31-C36	-171.2(4)
01-C1-C2-C31	-70.0 (5)	O2-C2-C31-C32	10.4 (6)
01-C1-C11-C12	-170.5(4)		

Examination of the structure with *PLATON* (Spek, 1995) showed that there were no solvent-accessible voids in the crystal lattice. The structure was solved by the Patterson heavy-atom method.

Data collection: CAD-4-PC (Enraf-Nonius 1992). Cell refinement: SET4 and CELDIM (Enraf-Nonius, 1991). Data reduction: DATRD2 in NRCVAX94 (Gabe, Le Page, Charland, Lee & White, 1989). Program(s) used to refine structure: NRCVAX94 and SHELXL93 (Sheldrick, 1993). Molecular graphics: NRCVAX94 and PLATON (Spek, 1995). Software used to prepare material for publication: NRCVAX94 and SHELXL93.

JT and GF thank NSERC (Canada) for research grants.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1043). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Barnes, J. C., Bell, W., Glidewell, C. & Howie, R. A. (1990). J. Organomet. Chem. 385, 369-378.
- Bernal, I. (1985). Inorg. Chim. Acta, 96, 99-110.
- Bernal, I., Cetrullo, J., Cai, J. & Massoud, S. S. (1995). Struct. Chem. 6, 99-113.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. & Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156–3166.
- Brown, C. J. & Sadanaga, R. (1965). Acta Cryst. 18, 158-164.
- Crowley, J. I., Balanson, R. D. & Mayerle, J. J. (1983). J. Am. Chem. Soc. 105, 6416–6422.
- Danielson, D. D. & Hedberg, K. (1979). J. Am. Chem. Soc. 101, 3730-3734.
- Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
- Enraf-Nonius (1991). CAD-4 Users Manual. Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1992). CAD-4-PC. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Eriks, K., Hayden, T. D., Yang, S. H. & Chan, I. Y. (1983). J. Am. Chem. Soc. 105, 3940-3942.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gyepes, E. & Hanic, F. (1975). Cryst. Struct. Commun. 4, 229-232.
- Hope, H. & Black, K. T. (1972). Acta Cryst. B28, 3632-3634.
- Kimura, M., McCluney, R. E. & Watson, W. H. (1979). Acta Cryst. B35, 483-484.
- More, M., Odou, G. & Lefebvre, J. (1987). Acta Cryst. B43, 398-405.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sato, K., Iwai, M., Sano, H. & Konno, M. (1984). Bull. Chem. Soc. Jpn, 57, 634–638.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1995). PLATON. Molecular Geometry Program. July 1995 version. University of Utrecht, The Netherlands.
- Steiner, T. (1994). J. Chem. Soc. Chem. Commun. pp. 2341-2342.
- Steiner, T. (1995). J. Chem. Soc. Chem. Commun. pp. 95-96.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 775-777

Racemic Bis(1-ferrocenylpropyl) Ether

George Ferguson,^a James Trotter,^a Christopher Glidewell^b and Choudhury M. Zakaria^b

^aDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2WI, and ^bSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland. E-mail: cg@st-andrews.ac.uk

(Received 24 August 1995; accepted 1 November 1995)

Abstract

The title compound, $[Fe_2(C_5H_5)_2(C_{16}H_{20}O)]$, formed by reduction of propionoylferrocene and subsequent dehydration, crystallizes as a racemic mixture of *RR* and *SS* forms. In the central C—O—C fragment, the angle at the O atom is 115.7 (2)°.

Comment

The reaction between ferrocene and *p*-tolualdehyde in strongly acidic solution yields bis[ferrocenyl(*p*-tolyl)methyl] ether, [FcCH(C₆H₄CH₃)]₂O, [Fc = (C₅H₅)Fe-(C₅H₄)] (Matkovic-Calogovic, Rapic & Kovac, 1993). While each of the C atoms bonded to the O atom in this compound is a stereogenic centre, only a single product was isolated, which X-ray structure analysis identified as a racemic mixture of the *RR* and *SS* diastereoisomers (Matkovic-Calogovic *et al.*, 1993). No *RS* or *SR* product was observed. We have now observed that acid-catalysed dehydration of 1ferrocenylpropan-1-ol, FcCH(OH)C₂H₅, yields bis[1ferrocenylpropyl] ether, [FcCH(C₂H₅)]₂O, (I), and have characterized the product as a similar racemic mixture of *RR* and *SS* forms.

Compound (I) crystallizes in the centrosymmetric triclinic space group $P\bar{1}$ with one molecule in the asymmetric unit: two enantiomeric forms are therefore present. Structure solution and refinement showed that these were the *RR* and *SS* forms and that each form has approximate twofold rotational symmetry (Fig. 1 and Table 2); no evidence was found for the occurrence of the *meso RS* (or *SR*) form of (I). In this respect, the structure of (I) resembles that of $[FcCH(C_6H_4CH_3)]_2O$, in which the molecules lie on the twofold rotation axes